LESSON PLAN

SUB-ANLOG ELECTRONICS AND LINIER IC

BRANCH-ETC

SEM -4TH

Week	Lecture	Topic to be covered
1st week	1 st	UNIT-1: DIODE,TRANSISTOR AND CIRCUIT
		Working Principle of diode and current Equation, Specifications and
		use of PN junction diode, Construction of diode
	2 nd	Breakdown of diode, , Working of diode, Characteristic of diode
	3 rd	Classification of rectifier, Half wave rectifier
	4 th	Full wave rectifier
	1 st	Working principle of p-n-p and n-p-n transistor,
2 nd week	2 nd	Different types of transistor connection (CB, CE and CC)& input
		and output characteristics of transistor in different connections.
	3 rd	Define ALPHA, BETA and GAMMA of transistors in various
		modes. Establish the Mathematical relationship between them.
	4 th	Load line (AC &DC) and determine the Q-point.
	5 th	Basic concept of Biasing, Types of Biasing,
3rd week	1 st	h-parameter model of BJT,
	2 nd	Types of Coupling, working principle and use of R-C Coupled Amplifier & Frequency Responses
	3 rd	Unit-2: AUDIO POWER AMPLIFIERS.
		Classify Power Amplifier & Differentiate between Voltage and
		Power Amplifier.
	4 th	Working principle of Class A Power Amplifier
	5 th	Working principle of Class B Power Amplifier
4 th week	1 st	Working principle of Class C Power Amplifier
	2 nd	Working principle of Class D Power Amplifier
	3 rd	Working principle of Class AB Power Amplifier

Week	<u>Lecture</u>	Topic to be covered
5 th week	1 st	Working of Class B push pull amplifier
	2 nd	Unit-3: FIELD EFFECT TRANSISTOR (FET).
		FET & its classifications & Differentiate between JFET & BJT.
	3 rd	Construction, working principle of N channel JFET and P channel JFET
	4 th	characteristics of JEFT
	5 th	Explain JEFT as an amplifier,
6 th week	1 st	Parameters of JFET & Establish relation among JFET parameters
	2 nd	Construction & its classification MOSFET
	3 rd	Working principle of MOSFET
	4 th	Characteristics (Drain & Transfer) of MOSFET
	5 th	Explain the operation of CMOS,
7 th week	1 st	Explain the operation of VMOS,
	2 nd	Explain the operation of LD MOS,
	3 rd	Unit-4: FEED BACK AMPLIFIER & OSCILLATOR
		Define & classify Feedback Amplifier,
		Types of feedback – negative &positive feedback.
	4 th	Types of negative feedback – voltage shunt, voltage series,
8 th week	1 st	Types of negative feedback –
		current shunt, current series.
	2 nd	Characteristics voltage gain, bandwidth, input Impedance output
		impedance, stability, noise, distortion in amplifiers.

3 rd		Oscillator -block diagram of sine wave oscillator	
4 th	h	Types Requirement of oscillation- Barkhausen criterion	

13 th week	1 st	Define the following electrical characteristics input offset voltage, input offset current, CMMR, Large signal voltage gain, Slew rate
	2 nd	Explain the Open Loop configuration of non-inverting Amplifier
	3 rd	Explain the Open Loop configuration of inverting Amplifier
	4 th	Voltage series feedback amplifier and derive the close loop Voltage gain
	5 th	Gain of series feedback circuits input resistance, and output resistance, bandwidth and total output offset voltage with feedback
14th week	1 st	Voltage shunt feedback amplifier and derive the close loop, Voltage gain,
	2 nd	Gain of shunt feedback circuits and input resistance, and output resistance, bandwidth and total output offset voltage with feedback.
	3 rd	Unit-7. APPLICATION OF OPERATIONAL AMPLIFIER, TIMER CIRCUITS& IC voltage regulator summing scaling and averaging of inverting and non-inverting amplifiers
	4 th	DC & AC Amplifies using OP-AMP. Integrator and differentiator using op-amp.
15 th Week	1 st	Active filter and describe the filter design of fast order low Pass Butterworth, Concept of Zero-Crossing Detector using Op-Amp
	2 nd	Block diagram and operation of IC 555 timer &IC 565 PLL& its applications.
	3 rd	Working of Current to voltage and Voltage to Frequency and Frequency to Voltage Convertor using Operational Amplifier
	4 th	Operation of power supply using 78XX and 79XX,LM 317 Series with their PIN configuration , Functional block diagram & Working of IC regulator LM 723 & LM 317
	5 th	Functional block diagram & Working of IC regulator LM 723 & LM 317